Agilent part number: 83485-90062
Printed in USA May 2000

Notice. The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

©Copyright Agilent Technologies 2000
All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.
Safety Symbols

The following safety symbols are used throughout this manual. Familiarize yourself with each of the symbols and its meaning before operating this instrument.

CAUTION

The *caution* sign denotes a hazard to the instrument. It calls attention to a procedure which, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a *caution* sign until the indicated conditions are fully understood and met.

WARNING

The *warning* sign denotes a life-threatening hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a *warning* sign until the indicated conditions are fully understood and met.

<table>
<thead>
<tr>
<th>Instruction Manual</th>
<th>The instruction manual symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the manual.</th>
</tr>
</thead>
</table>

General Safety Considerations

WARNING
Before this instrument is switched on, make sure it has been properly grounded through the protective conductor of the ac power cable to a socket outlet provided with protective earth contact.

Any interruption of the protective (grounding) conductor inside or outside the instrument, or disconnection of the protective earth terminal can result in personal injury.

WARNING
There are many points in the instrument which can, if contacted, cause personal injury. Be extremely careful.

Any adjustments or service procedures that require operation of the instrument with protective covers removed should be performed only by trained service personnel.

WARNING
If this instrument is not used as specified, the protection provided by the equipment could be impaired. This instrument must be used in a normal condition (in which all means for protection are intact) only.

CAUTION
Before this instrument is switched on, make sure its primary power circuitry has been adapted to the voltage of the ac power source.

Failure to set the ac power input to the correct voltage could cause damage to the instrument when the ac power cable is plugged in.

CAUTION
Electrostatic discharge (ESD) on or near input connectors can damage circuits inside the instrument. Repair of damage due to misuse is not covered under warranty.

Before connecting any cable to the electrical input, momentarily short the center and outer conductors of the cable together. Personnel should be properly grounded, and should touch the frame of the instrument before touching any connector.
Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products.

For assistance, contact your nearest Agilent Technologies Service Office.

Sales and service offices

Agilent Technologies has sales and service offices located around the world to provide complete support for Agilent Technologies products. To obtain servicing information or to order replacement parts, contact the nearest Agilent Technologies Sales and Service Office. In any correspondence or telephone conversation, refer to the instrument by its model number, serial number, and option designation.

Before returning an instrument for service, call the Agilent Technologies Instrument Support Center at (800) 403-0601, visit the Test and Measurement Web Sites by Country page at http://www.tm.agilent.com/tmo/country/English/index.html, or call one of the numbers listed below.
<table>
<thead>
<tr>
<th>Country</th>
<th>Service Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>01/25125-7111</td>
</tr>
<tr>
<td>Belgium</td>
<td>32-2-776,37,71</td>
</tr>
<tr>
<td>Brazil</td>
<td>111 7287-8600</td>
</tr>
<tr>
<td>China</td>
<td>86 10 6261 3019</td>
</tr>
<tr>
<td>Denmark</td>
<td>45 99 12 68</td>
</tr>
<tr>
<td>Finland</td>
<td>358-10-855-2380</td>
</tr>
<tr>
<td>France</td>
<td>01.69.68.66.66</td>
</tr>
<tr>
<td>Germany</td>
<td>0180/534-6330</td>
</tr>
<tr>
<td>India</td>
<td>006-34 35700</td>
</tr>
<tr>
<td>Italy</td>
<td>+39 02 9212 2701</td>
</tr>
<tr>
<td>Ireland</td>
<td>01 615 6222</td>
</tr>
<tr>
<td>Japan</td>
<td>(01) 426-56-7832</td>
</tr>
<tr>
<td>Korea</td>
<td>02/2-3770-6419</td>
</tr>
<tr>
<td>Mexico</td>
<td>(51) 58-4826</td>
</tr>
<tr>
<td>Netherlands</td>
<td>020-547 6463</td>
</tr>
<tr>
<td>Norway</td>
<td>22 73 57 59</td>
</tr>
<tr>
<td>Russia</td>
<td>+7-095-767-3930</td>
</tr>
<tr>
<td>Spain</td>
<td>(34/91) 631 1213</td>
</tr>
<tr>
<td>Sweden</td>
<td>06-5064 6700</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1011 735 7200</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>01 344 366666</td>
</tr>
<tr>
<td>United States and Canada</td>
<td>800 463-6801</td>
</tr>
</tbody>
</table>
Warranty

This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Agilent Technologies warrants that its software and firmware designated by Agilent Technologies for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. Agilent Technologies specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are Buyer’s sole and exclusive remedies. Agilent Technologies shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.
Contents

Sales and service offices ... v

1. The Instrument at a Glance
 Ordering information .. 1-4
 Menu and Key Conventions 1-6
 The Agilent 83485A/B Optical/Electrical Plug-In Module 1-8
 Front panel of the plug-in module 1-10
 Getting the best performance 1-11
 Installing the plug-in module 1-11
 Trigger ... 1-12
 Cleaning Connections for Accurate Measurements 1-13
 To clean a non-lensed connector 1-15
 To clean an adapter ... 1-16
 To test insertion loss 1-16
 To test return loss .. 1-17

2. Channel Setup Menu
 Displaying the Channel Setup menus 2-4
 Display .. 2-5
 Scale ... 2-6
 Offset .. 2-7
 Bandwidth/Wavelength ... 2-7
 Channel autoscale .. 2-9
 External scale .. 2-9
 Calibrate .. 2-11

3. Calibration Overview
 Factory Calibrations .. 3-4
 Mainframe Calibration ... 3-4
 O/E Factory Wavelength Calibration 3-6
 User Calibrations—Optical and Electrical 3-7
 O/E User-Wavelength Calibration 3-9
 Plug-in Module Vertical Calibration 3-11
 Offset Zero Calibration 3-12
 Dark Calibration .. 3-14

Contents-1
Channel Skew Calibration 3-15
Probe Calibration 3-16
External Scale 3-18
Complete Calibration Summary 3-20

4. Specifications and Regulatory Information
Specifications 4-3
 Vertical specifications 4-3
 Environmental specifications 4-9
Characteristics 4-10
 Trigger input characteristics 4-10
Declaration of Conformity 4-11

5. In Case of Difficulty
 If the mainframe does not operate 5-3
 If the plug-in does not operate 5-4
 Error Messages 5-6

Index
Figures

1-1. Front panel of the plug-in module. ... 1-10
2-1. Optical Channel Setup menu .. 2-3
2-2. Electrical Channel Setup menu .. 2-4
2-3. A typical Cal Status display ... 2-13
3-1. Current Frame ΔTemp condition .. 3-5
3-2. Plug-in calibration menu .. 3-10
3-3. Offset Zero Calibration .. 3-13
3-4. Dark calibration menu ... 3-15
3-5. Electrical Channel Calibrate Menu 3-17
3-6. External Scale Menu ... 3-19

Tables

3-1. Factory Calibration Summary .. 3-4
3-2. Optical and Electrical Channel User Calibration Summary 3-8
3-3. Miscellaneous User Calibration Summary 3-9
3-4. Complete Calibration Summary .. 3-20

Contents-3
The Instrument at a Glance
The Instrument at a Glance

What you’ll find in this chapter

This chapter describes:

- options and accessories
- the key conventions used in this manual
- the front panel, rear panel and keys that do not display menus on the screen
- lightwave connector care

Understanding the information in this chapter will help you successfully operate the instrument.

CAUTION

The input circuits can be damaged by electrostatic discharge (ESD). Therefore, avoid applying static discharges to the front-panel input connectors. Before connecting any coaxial cable to the connectors, momentarily short the center and outer conductors of the cable together. Avoid touching the front-panel input connectors without first touching the frame of the instrument. Be sure that the instrument is properly earth-grounded to prevent buildup of static charge.

The Agilent 83485A optical/electrical plug-in module incorporates two measurement channels, one optical and one electrical. Each channel has two selectable bandwidth settings. In the lower bandwidth modes of 12.4 GHz, oscilloscope noise performance is excellent, while the 20 GHz mode allows greater fidelity for high speed signals.

The Agilent 83485B optical/electrical plug-in module incorporates a 30 GHz optical measurement channel and a 40 GHz electrical channel. The electrical channel also has a reduced-bandwidth setting of 18 GHz for improved noise performance.

The integrated optical channel reduces mismatch loss variation by eliminating signal distorting cables and connectors associated with the use of external receivers in order to accurately characterize optical waveforms. The optical
channel is calibrated at 1310 nm and 1550 nm to provide both accurate display of the received optical waveform in optical power units and measurement of the signal’s average power. In addition, the User Cal feature provides for consistent accuracy at any wavelength between 1200 nm and 1600 nm using a source and power meter.

The Agilent 83485A optical/electrical plug-in module also is a calibrated SONET/SDH reference receiver that is measured to comply to ITU-TS (formerly CCITT) G.957 and Bellcore GR-253-CORE frequency response requirements for transmitter compliance testing. By either pressing a front-panel button or issuing an GPIB command, a fourth-order Bessel-Thomson filter is inserted into or removed from the measurement channel by a very repeatable Agilent microwave switch. The switch removes the potential variability and the time wasted by manually inserting and removing the filter when alternating between high-fidelity waveform characterization and SONET/SDH compliance testing.

The Agilent 83485B optical/electrical plug-in module includes a reference receiver path, similar to the Agilent 83485A, for 10 Gb/s transmitter test. Although no industry standards exist for 10 Gb/s testing, the Agilent 83485B has been designed to meet anticipated future standards.

The electrical measurement channel may be used to perform measurements on tributary electrical signals, to evaluate receiver performance in transceiver testing, for measurements with Agilent Technologies’ wide range of external optical receivers, or for general purpose measurements.

The Agilent 83485A optical/electrical plug-in module provides:

- 12.4 GHz and 20 GHz optical channel
- 12.4 GHz and 20 GHz electrical channel
- Switchable SDH/SONET filter for transceiver compliance testing
- Trigger channel input to the mainframe

The Agilent 83485B optical/electrical plug-in module provides:

- 30 GHz optical channel
- 18 GHz and 40 GHz electrical channel
- Switchable SDH/SONET filter for transceiver performance testing
- Trigger channel input to the mainframe
Ordering information

Agilent 83485A options

- Option 030 Built-in STM-1/OC-3 155 Mb/s SDH/SONET reference receiver
- Option 032 Built-in STM-4/OC-12 622 Mb/s SDH/SONET reference receiver
- Option 034 Built-in STM-16/OC-48 2.488 Gb/s SDH/SONET reference receiver
- Option 03B Agilent 83485A/B Service Guide
- Option 031 Additional set of user documentation
- Option 030 Deletes the user documentation
- Option 036 Measured performance data

Agilent 83485B options

- Option 001 Latest operating system firmware for the Agilent 83480A mainframe
- Option 002 Latest operating system firmware for the Agilent 54750A mainframe
- Option 040 Fourth order filter/10 Gb/s reference receiver
- Option 050 Fifth order filter/10 Gb/s reference receiver

Optical connector interface options

- Option 011 Diamond HMS-10
- Option 012 FC/PC
- Option 013 DIN 47256
- Option 014 ST
- Option 015 Biconic
- Option 017 SC
Optional accessories

Agilent 54006A 6 GHz divider probe
Agilent 54008A 22 ns delay line
Agilent 54118A 500 MHz to 18 GHz trigger
Agilent 10086A ECL terminator
SMA (f-f) adapter, Agilent part number 1250-1158
SMA 50Ω termination, Agilent part number 1810-0118, 1 each
APC 3.5 (f-f) adapter, Agilent part number 1250-1749
APC 2.4 (f-f) adapter, Agilent 11900B
APC 2.4 to 3.5 (f-f) adapter, Agilent 11901B
Agilent 81000AI Diamond HMS-10 connector interface
Agilent 81000FI FC/PC/SC/APC connector interface
Agilent 81000KI SC connector interface
Agilent 81000SI DIN 47256/4108.6 connector interface
Agilent 81000VI ST connector interface
Agilent 81000WI Biconic
Menu and Key Conventions

The keys labeled Trigger, Disk, and Run are all examples of front-panel keys. Pressing some front-panel keys accesses menus of functions that are displayed along the right side of the display screen. These menus are called softkey menus.

Softkey menus list functions other than those accessed directly by the front-panel keys. To activate a function on the softkey menu, press the unlabeled key immediately next to the annotation on the screen. The unlabeled keys next to the annotation on the display are called softkeys.

Additional functions are listed in blue type above and below some of the front-panel keys. These functions are called shifted functions. To activate a shifted function, press the blue front-panel Shift key and the front-panel key next to the desired function.

Throughout this manual front-panel keys are indicated by a box around the key label, for example, (Timebase). Softkeys are indicated by shading on the key label, for example, Mask Align. The softkeys displayed depend on the front-panel key pressed and which menu is selected. Shifted functions are indicated by the front-panel [Shift] key followed by the shaded shifted function, for example the Local function (above the (Stop/Single) front-panel key) will be shown as (Shift) Local.

A softkey with On and Off in its label can be used to turn the softkey’s function on or off. To turn the function on, press the softkey so On is highlighted. To turn the function off, press the softkey so Off is highlighted. An On or Off softkey function will be indicated throughout this manual as: Test On.

A softkey such as Sweep Triggered Freerun offers you a choice of functions. In this case you could choose Triggered by pressing the softkey until Triggered is highlighted, or choose Freerun by pressing the softkey until Freerun is highlighted. A choices softkey will be indicated throughout this manual as: Sweep Triggered Freerun Triggered.

When some softkeys, such as Calibrate probe, are pressed the first time, a measurement will be made and the result will be provided. Some softkeys, such as Offset, require the entry of a numeric value. To enter or change the
value, use the general purpose knob located below the front-panel Measure section.
The Agilent 83485A/B Optical/Electrical Plug-In Module

The Agilent 83485A/B optical/electrical plug-in modules are two of several plug-in modules available for the Agilent 83480A, 54750A mainframes. Their main features are:

- Integrated, calibrated optical channel.
- Optical channel includes switchable SONET/SDH filter.
- Electrical measurement channel.
- 2.5 GHz trigger channel.
- Both optical and electrical measurement channels have user selectable bandwidths of 12.4 or 20 GHz. *(Agilent 83485A only)*
- 30 GHz optical channel bandwidth and user selectable 18 or 40 GHz electrical channel bandwidth. *(Agilent 83485B only)*
- 3.5 mm (m) connectors on electrical measurement channel and trigger channel. *(2.4 mm (m) connector on electrical channel of Agilent 83485B)*
- One probe power connector.
- One auxiliary power connector.
- Optical channel has an Agilent universal adapter for 9/125 μm single-mode fiber input.

NOTE

If you wish to use the Agilent 83485A/B optical plug-in module in an Agilent 54750A digitizing oscilloscope, a firmware upgrade must first be installed. Order the Agilent 83480K communications firmware kit and follow the installation instructions.
The purpose of the plug-in module is to provide measurement channels, including sampling, for the mainframe. The plug-in module scales the input signal, sets the bandwidth of the system, and allows the offset to be adjusted so the signal can be viewed. The output of the plug-in module is an analog signal that is applied to the ADCs on the acquisition boards inside the mainframe. The plug-in module also provides a trigger signal input to the time base/trigger board inside the mainframe.
Front panel of the plug-in module

The plug-in module takes up two of the four mainframe slots. The optical channel provides calibrated measurement of optical waveforms in power units. Bandwidths are selectable on both channels to optimize sensitivity and bandwidth. The front panel of the plug-in module has two channel inputs and an external trigger input. The front panel also has two Probe Power connectors for Agilent 54700-series probes, Aux Power connector for general purpose use, and a key for each channel that displays the softkey menu. The softkey menu allows you to access the channel setup features of the plug-in module.

The front-panel Probe Power connectors allow automatic channel scaling and probe calibration with Agilent 54700 series probes. The front-panel Aux Power connector provides only power to Agilent 54700 series probes for use as a trigger input. Probe calibration and scaling are not required for a trigger input.

![Figure 1-1. Front panel of the plug-in module.](image-url)
Getting the best performance

To ensure you obtain the specified accuracy, you must perform a plug-in module vertical calibration. The calibration must also be performed when you move a plug-in module from one slot to another, or from one mainframe to another. Refer to Chapter 3 for information on performing a plug-in module vertical calibration.

Installing the plug-in module

You do not need to turn off the mainframe to install or remove the plug-in modules.

NOTE

If you wish to use the Agilent 83485A/B optical plug-in module in an Agilent 54750A digitizing oscilloscope, a firmware upgrade must first be installed. Order the Agilent 83485K communications firmware kit and follow the installation instructions.
The Instrument at a Glance

The Agilent 83485A/B Optical/Electrical Plug-In Module

To use the plug-in module, the Agilent 83480A/54750A firmware revision 3.0 or higher is required.

The plug-in module can be installed in slots 1 and 2 or 3 and 4 on the Agilent 83480A, 54750A mainframe. The plug-in module will not function if it is installed in slots 2 and 3.

To make sure the analyzer meets all of the published specifications, there must be a good ground connection from the plug-in module to the mainframe. The RF connectors on the rear of the plug-in module are spring loaded, so finger-tighten the knurled screw on the front panel of the plug-in module to make sure the plug-in is securely seated in the mainframe.

CAUTION

Do not use extender cables to operate the plug-in module outside of the mainframe. The plug-in module using extender cables can be damaged by improper grounding when using extender cables.

Trigger

The external trigger level range for this plug-in module is ±1 V. The trigger source selection follows the slots the plug-in module is installed in. For example, if the plug-in module is installed in slots 1 and 2, then the trigger source is listed as trigger 2. If it is installed in slots 3 and 4, then the trigger source is listed as trigger 4.

CAUTION

The maximum safe input voltage is ±2 V + peak ac (+16 dBm).

CAUTION

The input circuits can be damaged by electrostatic discharge (ESD). Therefore, avoid applying static discharges to the front-panel input connectors. Before connecting any coaxial cable to the connectors, momentarily short the center and outer conductors of the cable together. Avoid touching the front-panel input connectors without first touching the frame of the instrument. Be sure that the instrument is properly earth-grounded to prevent buildup of static charge.

1-12
Cleaning Connections for Accurate Measurements

Accurate and repeatable measurements require clean connections. Use the following guidelines to achieve the best possible performance when making measurements on a fiber-optic system:

- Keep connectors covered when not in use.
- Use dry connections whenever possible.
- Use the cleaning methods described in this section.
- Use care in handling all fiber-optic connectors.
- When inserting a fiber-optic connector into a front-panel adapter, make sure that the fiber end does not touch the outside of the mating connector or adapter.

Because of the small size of cores used in optical fibers, care must be used to ensure good connections. Poor connections result from core misalignment, air gaps, damaged fiber ends, contamination, and improper use and removal of index-matching compounds.

Use dry connections. Dry connectors are easier to clean and to keep clean. Dry connections can be used with physically contacting connectors (for example, Diamond HMS-10, FC/PC, DIN, and ST). If a dry connection has 40 dB return loss or better, making a wet connection will probably not improve (and can degrade) performance.

CAUTION

Agilent Technologies strongly recommends that index matching compounds NOT be applied to their instruments and accessories. Some compounds, such as gels, may be difficult to remove and can contain damaging particulates. If you think the use of such compounds is necessary, refer to the compound manufacturer for information on application and cleaning procedures.

Cleaning Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Agilent Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Isopropyl Alcohol</td>
<td>-</td>
</tr>
<tr>
<td>Cotton Swabs</td>
<td>8520-0023</td>
</tr>
<tr>
<td>Small foam swabs</td>
<td>8300-1223</td>
</tr>
<tr>
<td>Compressed dust remover (non-residue)</td>
<td>8500-5262</td>
</tr>
</tbody>
</table>
Dust Caps Provided with Lightwave Instruments

<table>
<thead>
<tr>
<th>Item</th>
<th>Agilent Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser shutter cap</td>
<td>08145-64621</td>
</tr>
<tr>
<td>FC/PC dust cap</td>
<td>08154-44102</td>
</tr>
<tr>
<td>D-inel dust cap</td>
<td>08154-44105</td>
</tr>
<tr>
<td>DIN dust cap</td>
<td>5640-8364</td>
</tr>
<tr>
<td>HML10 dust cap</td>
<td>5640-8361</td>
</tr>
<tr>
<td>ST dust cap</td>
<td>5640-8366</td>
</tr>
</tbody>
</table>

Inspecting Fiber-Optic Cables

Consistent measurements with your lightwave equipment are a good indication that you have good connections. However, you may wish to know the insertion loss and/or return loss of your lightwave cables or accessories. If you test your cables and accessories for insertion loss and return loss upon receipt, and retain the measured data for comparison, you will be able to tell in the future if any degradation has occurred.

Connector (or insertion) loss is one important performance characteristic of a lightwave connector. Typical values are less than 1 dB of loss, and sometimes as little as 0.1 dB of loss with high performance connectors. Return loss is another important factor. It is a measure of reflection: the less reflection the better (the larger the return loss, the smaller the reflection). The best physically contacting connectors have return losses better than 50 dB, although 30 to 40 dB is more common.

You can visually inspect your cables

Although it is not necessary, visual inspection of fiber ends can be helpful. Contamination or imperfections on the cable end face can be detected as well as cracks or chips in the fiber itself. Use a microscope (10X to 20X magnification) to inspect the entire end face for contamination, raised metal, or dents in the metal as well as any other imperfections. Inspect the fiber for cracks and chips. Visible imperfections not touching the fiber core may not affect performance (unless the imperfections keep the fibers from contacting).
To clean a non-lensed connector

CAUTION
Do not use any type of foam swab to clean optical fiber ends. Foam swabs can leave filmy deposits on fiber ends that can degrade performance.

1. Apply isopropyl alcohol to a clean lint-free cotton swab or lens paper.

 Cotton swabs can be used as long as no cotton fibers remain on the fiber end after cleaning.

2. Before cleaning the fiber end, clean the ferrules and other parts of the connector.

3. Apply isopropyl alcohol to a new clean lint-free cotton swab or lens paper.

4. Clean the fiber end with the swab or lens paper. Move the swab or lens paper back and forth across the fiber end several times.

 Some amount of wiping or mild scrubbing of the fiber end can help remove particles when application of alcohol alone will not remove them. This technique can remove or displace particles smaller than one micron.

5. Immediately dry the fiber end with a clean, dry, lint-free cotton swab or lens paper.

6. Blow across the connector end face from a distance of 6 to 8 inches using filtered, dry, compressed air. Aim the compressed gas at a shallow angle to the fiber end face.

 Nitrogen gas or compressed dust remover can also be used.

CAUTION
Do not shake, tip, or invert compressed air canisters, because this releases particles in the can into the air. Refer to instructions provided on the compressed air canister.

7. As soon as the connector is dry, connect or cover it for later use.
To clean an adapter

1. Apply isopropyl alcohol to a clean foam swab.

 Cotton swabs can be used as long as no cotton fibers remain after cleaning. The foam swabs listed in this section’s introduction are small enough to fit into adapters.

 Although foam swabs can leave filmy deposits, these deposits are very thin, and the risk of other contamination buildup on the inside of adapters greatly outweighs the risk of contamination by foam swabs.

2. Clean the adapter with the foam swab.

3. Dry the inside of the adapter with a clean, dry, foam swab.

4. Blow through the adapter using filtered, dry, compressed air.

 Nitrogen gas or compressed dust remover can also be used.

CAUTION

Do not shake, tip, or invert compressed air canisters, because this releases particles in the can into the air. Refer to instructions provided on the compressed air canister.

To test insertion loss

Use an appropriate lightwave source and a compatible lightwave receiver to test insertion loss. Examples of test equipment configurations include the following equipment:

- Agilent 71450A or 71451A optical spectrum analyzers with Option 002 built-in white light source
- Agilent 8702 or 8703 lightwave component analyzer system
- Agilent 83420 lightwave test set with an Agilent 8510 network analyzer
- Agilent 8153 lightwave multimeter with a source and power sensor module

1-16
To test return loss

Use an appropriate lightwave source, a lightwave receiver, and lightwave coupler to test return loss. Examples of test equipment configurations include the following equipment:

- Agilent 8703 lightwave component analyzer
- Agilent 8702 analyzer with the appropriate source, receiver, and lightwave coupler
- Agilent 8504 precision reflectometer
- Agilent 8153 lightwave multimeter with a source and power sensor module in conjunction with a lightwave coupler
- Agilent 81554SM dual source and Agilent 81534A return loss module
The Instrument at a Glance
Channel Setup Menu
Channel Setup Menu

What you'll find in this chapter
This chapter describes the Channel Setup menu. A key tree and description of the available functions is included.

CAUTION

The input circuits can be damaged by electrostatic discharge (ESD). Therefore, avoid applying static discharges to the front-panel input connectors. Before connecting any coaxial cable to the connectors, momentarily short the center and outer conductors of the cable together. Avoid touching the front-panel input connectors without first touching the frame of the instrument. Be sure that the instrument is properly earth-grounded to prevent buildup of static charge.

At the top of the plug-in module are the Channel keys. These keys give you access to the Channel Setup menu for each input. The Channel Setup menu is displayed on the right side of the screen when the Channel key is pressed. There are several types of softkeys available. A description of the different softkeys and their functions is provided in the Agilent 83480A, 54750A User's Quick Start Guide supplied with the mainframe.

NOTE

The plug-in module has both an electrical channel and an optical channel. Although many of the softkeys are similar, some differences exist. The examples in this book use the optical channel and note when the user would see differences if using the electrical channel.
Figure 2.1. Optical Channel Setup menu.
Displaying the Channel Setup menus

To display the optical Channel Setup menu, press the optical [Channel] key.
To display the electrical Channel Setup menu, press the electrical (Channel) key.

Display

The Display function turns the channel display off and on. When the channel display is on, a waveform is displayed for that channel, unless the offset is adjusted so the waveform is clipped off of the display.

The channel number, vertical scaling, and offset are displayed at the bottom left of the waveform area. They remain on the display until the channel is turned off, or an automatic measurement is performed. The automatic measurement results share the same area of the display as the channel setups.

When the channel display is off, the waveform display for that channel is turned off, pulse parameter measurements are stopped and acquisition on that channel is stopped, unless it is needed as an operand for waveform math functions.

Even though the channel display is off, you can still use the plug-in as a trigger source or as a function source in the Math menu. However, the analyzer will not trigger unless one or more of the other channel displays are turned on, or unless a math function is using one of the channels.

Key Path

(Channel) Display
Scale

The Scale softkey controls the vertical scaling of the waveform. If the fine mode is off, then the knob and arrow keys change the vertical scaling in a 1-2-5 sequence. When fine mode is on, the knob and arrow keys change the vertical scaling in 1 mV increments. You can also use the keypad to enter values in 1 mV increments, independent of the fine mode selection.

The units the scale is displayed in depend on the unit of measure selected with the Units softkey. The choices for units are volts or watts. (Amperes, or unknown are available on electrical channels only.)
Offset

The Offset softkey moves the waveform vertically. It is similar to the position control on analog oscilloscopes. The advantage of digital offset is that it is calibrated. The offset voltage for electrical channels is the voltage at the center of the graticule area, and the range of offset is ±12 times the full resolution channel scale. For optical channels, the offset wattage is the wattage two graticule divisions above the bottom of the screen. This is set because, unlike voltage displays, “negative” power levels do not exist but the zero power level can be viewed clearly when the offset is set to zero watts. You can use the knob, arrow keys, or keypad to change the offset setting. The fine mode also works with offset.

When an Agilent 54700-series active probe is used with the plug-in module and is connected to the probe power connector adjacent to the channel input, the offset control adjusts the external scale factor and offset of the hybrid inside the active probe. A probe connected to the auxiliary power connector adjacent to the trigger input will function, but the channel scale factor will not be adjusted automatically.

The optical channel displays the value in watts and the electrical channel displays the value in volts.

Key Path

(Channel) Offset

Bandwidth/Wavelength

You can use the Bandwidth/Wavelength softkey to change the bandwidth and wavelength settings and turn the filter on and off on the optical channel.
Channel Setup Menu

Bandwidth

Agilent 83485A: This function is available on the electrical channel and on the optical channel only when the filter is switched off.
You can use the Bandwidth function to select either the 12.4 GHz or the 20 GHz bandwidth.

Agilent 83485B: This function is available on the electrical channel only.
You can use the Bandwidth function to select either the 18 GHz or 40 GHz bandwidth.

Key Path

(Channel) Bandwidth/Wavelength... Bandwidth

Filter On Off

The Filter function allows a SONET/SDH Bessel-Thomson filter to be switched into the channel to create a SONET/SDH reference receiver.

Agilent 83485B: Option 40 is 10 Gbit/s fourth-order filter. Option 050 is 10 Gbit/s fifth-order filter.

Key Path

(Channel) Bandwidth/Wavelength... Filter On Off

Wavelength

This function is only available on the optical channel.
The Wavelength function selects the desired wavelength for calibrated measurements. Factory calibrated wavelengths are 1310 nm and 1550 nm. A user-calibrated wavelength is also available and can be calibrated in the range from 1000 nm to 1600 nm. Refer to Chapter 3 for additional information on performing a calibration.

Key Path

(Channel) Bandwidth/Wavelength... Wavelength
Channel autoscale

The Channel Autoscale function provides a convenient and fast method for determining the standard vertical scale setting with the highest resolution that will not clip the waveform. Timebase and trigger settings are not affected.

This function is useful in manufacturing environments where the timebase and trigger settings remain constant and only the vertical scale needs to be adjusted for signal level variations in multiple DUTs.

Key Path

(Channel) Channel autoscale

External scale . . .

The External Scale function allows you to setup the analyzer to use external optical-to-electrical converters or attenuators. Scaling is automatically adjusted to account for the external device.

Key Path

(Channel) External scale . . .

Atten units

The Atten Units function lets you select how you want the probe attenuation factor represented. The choices are either decibel or ratio. The formula for calculating decibels is:

$$20 \log \frac{V_{out}}{V_{in}} \text{ or } 10 \log \frac{P_{out}}{P_{in}}$$
Channel Setup Menu

The Attenuation function lets you select an attenuation that matches the device connected to the analyzer. When the attenuation is set correctly, the analyzer maintains the current scale factors if possible. All marker values and voltage or wattage measurements will reflect the actual signal at the input to the external device.

The attenuation range is from 0.0001:1 to 1,000,000:1. When you connect a compatible active probe to the probe power connector, adjacent to the channel input, the instrument automatically sets the attenuation. For all other devices, set the probe attenuation with the knob, arrow keys, or keypad.

NOTE

Refer to Chapter 3 for information on calibrating to the tip of the probe.

Key Path

(Channel) External scale Attenuation

Units

The Units function lets you select the unit of measure appended to the channel scale, offset, trigger level, and vertical measurement values. For the optical channel these units are Volts or Watts. For the electrical channel the units are Volts, Amperes, Watts, or unknown. Use Volt for voltage probes, Ampere for current probes, Watt for optical-to-electrical (O/E) converters, and unknown when there is no unit of measure or when the unit of measure is not one of the available choices.

Key Path

(Channel) External scale Units
When you select Ampere, Watt, or unknown on an electrical channel or Voltage on an optical channel, two additional functions become available: External Gain and External Offset. These two additional functions allow you to compensate for the actual characteristics of the probe rather than its ideal characteristics. For example, you might have an amplified lightwave converter with ideal characteristics of 300 V/W with 0 V offset. But, its actual characteristics are 324 V/W with 1 mV of output offset. Therefore, set the External Gain to 324 V/W and the External Offset to 1 mV.

Key Path

```
(Channel) External scale ... Units Volt Ext gain or Ext Offset
(Channel) External scale ... Units Watt Ext gain or Ext Offset
(Channel) External scale ... Units Unknown Ext gain or Ext Offset
```

Calibrate

The calibrate menu allows you to null out any skew between probes or cables, remove the effects of offsets in the internal O/E converter, recalibrate the responsivity of the O/E converter, and check the present calibration status of the analyzer.

Key Path

```
(Channel) Calibrate
```
Channel Setup Menu

The Skew function changes the horizontal position of a waveform on the display. The Skew function has a range of \(\pm 100 \mu s \). You can use skew to compensate for differences in cable or probe lengths. It also allows you to place the triggered edge at the center of the display when you are using a power splitter connected between the channel and trigger inputs. Another use for skew is when you are comparing two waveforms that have a timing difference between them. If you are more interested in comparing the shapes of two waveforms rather than the actual timing difference between them, you can use Skew to overlay one waveform on top of the other waveform.

To skew two channels

1. Turn both channels on and overlay the signals vertically.
2. Expand the time base so the rising edges are about a 45 degree angle.
3. Adjust the skew on one of channels so that the rising edges overlap at the 50 percent points.

Key Path

(Channel) Calibrate Skew
The Cal Status function displays a screen similar to Figure 2.3.

Figure 2.3. A typical Cal Status display.

Current Date
This is the current date and time. You can compare this to the last plug-in module calibration time. That way you will know how long it has been since the last plug-in module calibration was performed.

Current Frame ΔTemp
This is the temperature change on the inside of the instrument since the last mainframe calibration was performed. A positive number indicates how many degrees warmer the mainframe is currently as compared to the temperature of the mainframe at the last mainframe calibration.
Channel Setup Menu

Channel 1 Calibration Status

The instrument displays **Calibrated** or **Uncalibrated**, depending on whether the last plug-in module calibration is still valid. A calibration can be invalidated if:

- The mainframe has cycled power.
- The plug-in has been repaired, reprogrammed, or removed from the mainframe.
- The instrument’s operating temperature has changed and remains more than 5°C from the temperature at which the Plug-in calibration was performed.

Uncalibrated indicates the plug-in module vertical calibration is invalid.

Plug-in

The Plug-in function lists the model number, serial number, date, time, and temperature delta. The temperature Δ is the temperature change from the temperature of the mainframe when the last calibration was performed. If this temperature Δ is greater than ±5°C since the last mainframe calibration, then you must perform a plug-in module calibration to achieve the specified dc accuracy.

Offset Zero

The Offset Zero function performs a quick offset calibration on the optical channel. Since the primary source of calibration error on the optical channel is offset drift, this function is useful:

- after the plug-in module vertical calibration described in Chapter 3 has been performed,

 and

- if the plug-in module has not been removed and reinstalled.

Performing an Offset Zero calibration is much faster than performing a complete vertical calibration.

Key Path

Key Path

(Channel) Calibrate Offset zero

0/E cal

The plug-in module is provided with factory optical calibrations at 1310 nm and 1550 nm. The O/E Calibration function allows you to calibrate the instrument for use at one additional user-defined wavelength between 1200 nm and 1600 nm. This calibration does not affect the factory calibrations.
Calibrate probe

Connect a voltage probe to the plug-in and then press:

Calibrate probe

The analyzer calibrates to the tip of the probe by setting the probe attenuation to the actual attenuation ratio of the probe. The analyzer also automatically compensates for any offset the probe may introduce. The CAL signal is internally routed to the probe tip for Agilent probes.

Key Path

(Channel) Calibrate Calibrate probe
Channel Setup Menu
Calibration Overview
Calibration Overview

<table>
<thead>
<tr>
<th>What you'll find in this chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory Calibrations</td>
</tr>
<tr>
<td>User Calibrations—Optical and Electrical</td>
</tr>
<tr>
<td>Complete Calibration</td>
</tr>
</tbody>
</table>

This chapter describes the calibration of the mainframe and the plug-in modules. It is intended to give you, or the calibration laboratory personnel, an understanding of the various calibration procedures available, and how they were intended to be used. There is a description of the calibration menu included in the manuals provided with the plug-in modules and probes.

Proper calibration is critical to measurement accuracy and repeatability. The Agilent 54750A/83480A and their associated modules and accessories require that both factory and user calibrations be implemented at the recommended intervals in order to perform measurements at their published specifications.

This chapter is divided into three sections. The first section describes factory calibrations. A factory calibration consists of verifying instrument performance to all specifications. If an instrument fails to meet specifications, adjustment or repair may be necessary. For most users, this will mean shipping the instrument back to an authorized service center. Some users may purchase the required instrumentation and perform the factory timebase calibrations themselves using the optional Agilent 83480A, 54750A Service Guide.

The second part of the chapter addresses calibrations that are routinely performed by the end user. Subsections in each of the two main sections discuss the individual calibrations. In addition, there will be summary tables at the end of each of these sections summarizing the main areas addressed. The third part of the manual consists of a complete calibration summary table at the end of the chapter. Both factory and user calibrations must be
performed regularly in order to ensure proper measurement accuracy and repeatability.

CAUTION
The input circuits can be damaged by electrostatic discharge (ESD). Avoid applying static discharges to the front-panel input connectors. Before connecting a coaxial cable to the connectors, momentarily short the center and outer connectors of the cable together. Avoid touching the front panel input connectors without first touching the frame of the instrument. Be sure that the instrument is properly earth-grounded to prevent buildup of static charge. It is strongly recommended that an antistatic mat and wristband be used when connecting to electrical channel inputs, particularly TDR inputs.

Calibration interval
Agilent Technologies recommends that the factory calibration be performed on a periodic basis. Agilent Technologies designs instruments to meet specifications over the recommended calibration interval provided that the instrument is operated within the specified operating environment. To maintain specifications, periodic recalibrations are necessary. We recommend that the plug-in module be calibrated at an Agilent Technologies service facility every 12 months. Users are encouraged to adjust the calibration cycle based on their particular operating environment or measurement accuracy needs.

Required warm-up time
The instrument requires a 1 hour warm-up period before any of the calibrations mentioned in this chapter are performed. It is not enough for the instrument to be in the standby setting. It must be turned on and running for the entire hour.

Remote operation
Remote programming commands for calibrations are included in the *Agilent 83480A/Agilent 54750A Programming’s Guide*. Performing calibrations remotely is slightly different than the operation of front-panel calibrations.
Factory Calibrations

The following calibrations are performed at the factory:

Mainframe Calibration
O/E Factory Wavelength Calibration

Table 3.1. Factory Calibration Summary

<table>
<thead>
<tr>
<th>Calibration</th>
<th>What is calibrated</th>
<th>Measurements Affected</th>
<th>Recommended Interval</th>
<th>Softkey Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainframe Calibration</td>
<td>Accuracy and continuity of the timescale</td>
<td>Channels affected: optical & electrical. All time base measurements such as rise time, fall time, eye width, and jitter.</td>
<td>Annually at Agilent service center or if operating temp has changed and remains 5°C or more from calibration temperature. See service manual.</td>
<td>Calibrate</td>
</tr>
</tbody>
</table>

1 Refer to “O/E User-Wavelength Calibration” in this chapter.

Mainframe Calibration

Mainframe calibration affects both optical and electrical measurements. Mainframe calibration improves timebase accuracy. All timebase measurements such as rise time, fall time, eye width, jitter, and so forth are affected by the timebase accuracy.
The calibration factors are stored in the nonvolatile RAM of the instrument. There is a switch on the back panel of the instrument that allows the mainframe calibration to be protected or unprotected. Next to the switch there is a drawing that shows each switch's function and protected position. Refer to the optional *Agilent 83480A, 54750A Service Guide* for more details about the mainframe calibration, and the position of the rear-panel memory protect switches.

To prevent access to the mainframe calibration switch, place a sticker over the access hole to this switch.

Do not attempt a Mainframe calibration without consulting the *Agilent 83480A, 54750A Service Guide*.

A mainframe calibration should be performed on a periodic basis, annually, or when the ambient operating temperature has changed by and remains 5°C different than the operating temperature at which the last mainframe calibration was performed. To see how much the operating temperature has changed since last mainframe calibration and the date of the last mainframe calibration, check the Calibration status by pressing the following key sequence: (U)nit, (C)alibrate, and then Cal status on.

The temperature change is displayed at the top of the display as shown in the following figure.

![Image](image.png)

Figure 3.1. Current Frame ΔTemp condition
Calibration Overview

Factory Calibrations

If the Current Frame ΔTemp listing is greater than ±5°C, then the mainframe should either be calibrated at the current operating temperature or be placed in an ambient air temperature that is within 5°C of the temperature of the current calibration.

O/E Factory Wavelength Calibration

Optical/electrical (O/E) factory wavelength calibration, compensates for the photodetector responsivity. The accuracy of all optical channel measurements is dependent on proper O/E calibration. O/E calibrations should be performed annually. Most customers return their optical plug-ins to an authorized Agilent Technologies service center for this calibration at the same time they are having their mainframes re-calibrated.

The Agilent 83480-series optical modules have one or two standard wavelengths (850 nm or 1310/1550 nm). The O/E Calibration function allows you to calibrate the instrument for use at one additional user-defined wavelength. This calibration does not affect the factory calibrations. See the following section on User Calibrations for additional information on this procedure.
User Calibrations—Optical and Electrical

The following calibrations can be performed by the user:

- O/E User Wavelength Calibration
- Plug-in Module Vertical Calibration
- Offset Zero Calibration
- Dark Calibration
- Probe Calibration
- Channel Skew
- External Scale

Electrical channels have calibration procedures for:

- adjusting timebase skew, for matching propagation delay between channels, probes, cables, and so forth
- using external probes

Optical channels have calibration procedures for:

- adjusting timebase skew
- monitoring and adjusting internal offsets
- performing a user-defined O/E responsivity adjustment

CAUTION

The input circuits can be damaged by electrostatic discharge (ESD). Avoid applying static discharges to the front panel input connectors. Before connecting a coaxial cable to the connectors, momentarily short the center and outer connectors of the cable together. Avoid touching the front panel input connectors without first touching the frame of the instrument. Be sure the instrument is properly earth-grounded to prevent buildup of static charge. An antistatic mat and wristband are strongly recommended, particularly when working with TDR modules.
Table 3.2. Optical and Electrical Channel User Calibration Summary

<table>
<thead>
<tr>
<th>Calibration</th>
<th>What is calibrated</th>
<th>Measurements Affected</th>
<th>Recommended Interval</th>
<th>Key Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/E User Wavelength</td>
<td>The photodetector response</td>
<td>Channels affected: optical. All optical channel measurements at user wavelengths.</td>
<td>Annual recalibration of user defined non-factory wavelengths.</td>
<td>(Optical Channel Setup) Calibrate O/E Cal</td>
</tr>
<tr>
<td>Vertical Calibration</td>
<td>Vertical offset and vertical scale accuracy for both electrical and optical channels.</td>
<td>Channels affected: optical & electrical. Any optical or electrical vertical measurements such as Vp to p, eye height, extinction ratio, and the optical power meter</td>
<td>Perform after any power cycle or once every 10 hours during continuous use or if operating temperature changes by more than 2°C.</td>
<td>Calibrate Plug-in</td>
</tr>
<tr>
<td>Offset Zero Calibration</td>
<td>Vertical offset is calibrated for the optical channel only. This calibration doesn't include vertical scale accuracy.</td>
<td>Channels affected: optical. Any optical vertical measurements including: Vp to p, eye height, and extinction ratio.</td>
<td>Perform a plug-in vertical calibration in order to meet published specifications. Because the offset zero calibration performs only the offset portion of the plug-in vertical calibration, it should only be used before fast non-critical measurements. Before extinction ratio measurements if the vertical scale or offset has changed since the last dark calibration or after a plug-in vertical calibration is performed.</td>
<td>Calibrate Offset 0</td>
</tr>
<tr>
<td>Dark Calibration</td>
<td>Dark calibration measures the channel offset signal without any light present and this value is used in the extinction ratio algorithm.</td>
<td>Channels affected: optical & electrical. Extinction ratio.</td>
<td>(Optical Channel Setup) Shift Meas eye Extinction ratio Dark Cal</td>
<td></td>
</tr>
</tbody>
</table>

3-8
O/E User-Wavelength Calibration

This optional optical/electrical (O/E) calibration is for optical measurements only. It compensates for the photodetector’s responsivity. The vertical accuracy of all optical channel user wavelength measurements is dependent on proper O/E user wavelength calibration. O/E user-wavelength calibrations should be performed annually or whenever a new wavelength is being measured. To perform a O/E user-wavelength calibration, a CW optical source with a known optical output power level is required. Refer to the specifications for the plug-in module for the acceptable power level ranges.

Table 3.3. Miscellaneous User Calibration Summary

<table>
<thead>
<tr>
<th>Calibration</th>
<th>What is calibrated</th>
<th>Measurements Affected</th>
<th>Recommended Interval</th>
<th>Key Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Calibrated</td>
<td>Probe Attenuation</td>
<td>Channels affected: electrical, any electrical measurement taken with the probe</td>
<td>Whenever a probe is connected</td>
<td>(Electrical Channel Setup)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channels affected: optical & electrical, multiple channel measurements, such as</td>
<td>Before multiple channel measurements when measuring timing differences between</td>
<td>Calibrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>differential TIA</td>
<td>channels</td>
<td>Calibrate probe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channels affected: optical & electrical, any measurement taken through an external</td>
<td>Whenever using external device (component or transducer)</td>
<td>(Channel Setup)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>channel device</td>
<td></td>
<td>Calibrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skew</td>
</tr>
<tr>
<td></td>
<td>Compensates for gain or loss associated with</td>
<td></td>
<td></td>
<td>(Channel Setup)</td>
</tr>
<tr>
<td></td>
<td>external device</td>
<td></td>
<td></td>
<td>External Scale</td>
</tr>
<tr>
<td></td>
<td>Calibration (calibrates vertical scale to</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE

The optical channel calibration accuracy is heavily dependent on the accuracy to which you know the optical source power. For best results, measure the optical source power with an optical power meter such as the Agilent B153A and use precision optical connectors. In addition, proper connector cleaning procedures are essential to obtaining an accurate calibration.

1. Press the plug-in module’s front-panel optical channel (SETUP) key.
2. Press Calibrate, and then (O/E cal).
3. Input the correct wavelength, and follow the instructions on the screen.

Figure 3-2. Plug-in calibration menu
To use an OE user-wavelength calibration

1. Press the plug-in module’s front-panel optical channel (SETUP) key.
2. Press Bandwidth/wavelength and then Wavelength.
3. Press User wavelength and then Enter.

Plug-in Module Vertical Calibration

The plug-in module vertical calibration is for both optical and electrical measurements. It allows the instrument to establish the calibration factors for a specific plug-in when the plug-in is installed in the mainframe. The plug-in calibration factors are valid only for the specific mainframe slot in which it was calibrated. The plug-in vertical calibration establishes vertical accuracy.

A plug-in vertical calibration should be done if:

- The mainframe has cycled power.
- The plug-in has been repaired, reprogrammed, or removed from the mainframe.
- The instrument’s operating temperature has changed and remains more than 5°C from the temperature at which the Plug-in calibration was performed.

To obtain the best measurement results, it is recommended that a user vertical calibration be performed after every 10 hours of continuous use or if the temperature has changed by greater than 2°C from the previous vertical calibration.

To view the temperature change

This procedure displays the temperature change that the instrument has undergone since the last Plug-in Vertical Calibration.

1. Press the front-panel channel (SETUP) key.
2. Press Calibrate and then Cal status on.

The current plug-in ∆Temp value is listed for each installed module.
To perform a plug-in module vertical calibration:

1. Remove any front-panel connections from electrical channels.
2. Cover the optical inputs for the optical channels.
3. Press [Utility], Calibrate..., and then Calibrate plug-in...
4. Select the plug-in module to be calibrated, press 1 and 2 or 3 and 4.
5. Press Start cal to start the calibration.
6. Follow the on-screen instructions.

No additional equipment is required to perform a plug-in vertical calibration. Reference signals are both generated and routed internally, for the optical and electrical channels. If you are prompted to connect the calibrator output to the electrical channel during an optical vertical calibration, then the factory O/E calibration has been lost. The module must then be returned to Agilent Technologies for calibration.

Offset Zero Calibration

The offset zero calibration performs a quick offset calibration on the optical channel for optical measurements. Since the primary source of calibration error on the optical channel is offset drift, this function is useful between the plug-in module vertical calibrations if the plug-in module has not been removed or reinstalled and the operating temperature has not changed more than ±5°C. In order to ensure that instrument specifications are met, perform the plug-in vertical calibration.

Performing an offset zero calibration is much faster than performing a complete vertical calibration. For critical measurements where offset measurement uncertainty is important to consider, perform an offset zero calibration between module vertical calibrations. Perform an offset zero calibration if the vertical scale or offset changes.
To initiate an offset calibration

1. Disconnect all inputs from the module being calibrated.
2. Cover all optical inputs.
3. Press the plug-in module’s front-panel optical channel [SETUP] key.
4. Press [Calibrate] and then [Offset zero].

![Offset Zero Calibration](image)

Figure 3-3. Offset Zero Calibration
Dark Calibration

The dark calibration is for optical measurements, or electrical measurements if an external O/E is being used. This calibration measures the optical channel offset signal when there isn’t any light present and then uses this information in performing extinction ratio measurements. Dark calibrations should be done for the following conditions:

- Before any critical extinction ratio measurements are made
- After a plug-in vertical calibration
- If a module has been removed
- If the mainframe power has been cycled
- If extinction ratio measurements are being made after the vertical scale or the offset has changed.

If the line power has been cycled, the dark calibration invokes either the offset zero calibration or plug-in vertical calibration as needed. This increases the time required for the dark calibration to complete. The Dark cal softkey is located within the Extinction ratio menu.

1. Press the Display key. Press the Color grade softkey, and set its setting to on.

 Color grade must be enabled to perform an extinction ratio measurement and a Dark calibration. In addition, the dark level (amplitude when there is no signal present) must be on the screen to perform a Dark calibration.

2. Press the blue shift key, and then the Meas eye softkey which is located beneath the display.

3. Press Extinction ratio ... and then Dark cal.

Disconnect all inputs from the module, including the trigger signal, and block any ambient light to the photodetector with a connector plug. Follow the instructions on the screen.
Channel Skew Calibration

This calibration affects both optical and electrical measurements. The skew calibration changes the horizontal position of a waveform on the display. The skew calibration has a range of approximately 100 μs. You can use skew to compensate for the differences in cable or probe lengths. It also allows you to place the trigger edge at the center of the display when you are using a power splitter connected between the channel and trigger inputs. Another use for skew is when you are comparing two waveforms that have a timing difference. If you are interested in comparing the shapes of two waveforms rather than the actual timing difference, you can use skew to overlay one waveform on top of the other waveform.
To skew two channels

1. Turn both channels on and overlay the signals vertically.
2. Expand the time base so that the rising edges are at about a 45° angle.
3. Press the plug-in module’s front-panel channel `SETUP` key.
4. Press `Calibrate` and then `Skew`.
5. Adjust the skew on one of the channels so that the rising edges overlap at the 50% points.

Probe Calibration

Probe calibration applies to electrical measurements only. For active probes such as the Agilent 54701A, which the instrument can identify through the probe power connector, the instrument automatically adjusts the channel vertical scale factors to the probe’s nominal attenuation, even if a probe calibration is not performed.

For passive probes or non-identified probes, the instrument adjusts the vertical scale factors only if a probe calibration is performed. Probe calibration allows the instrument to establish the gain and offset of specific probes that are connected to a channel of the instrument, and then apply those factors to the calibration of that channel.

The analyzer calibrates to the tip of the probe by setting the probe attenuation to the actual attenuation ratio of the probe. The CAL signal is internally routed to the probe tip for Agilent active probes.

The mainframe’s CAL signal is a voltage source, therefore you can let the instrument compensate for the actual characteristics of your probe by letting the instrument calibrate to the tip of the probe. The instrument automatically calibrates to the tip of the probe, sets the probe attenuation, and compensates for any probe offset.

If you do not perform a probe calibration but want to use a passive probe, enter the attenuation factor using the following steps:

1. Press the plug-in module’s front-panel channel `SETUP` key.
2. Press **External scale** and then **Attenuation**.

You can use the probe calibration to calibrate any network, including probes or cable assemblies. The instrument calibrates the voltage at the tip of the probe or the cable input.

To calibrate an Agilent identifiable probe

1. Press the plug-in module's front-panel channel **SETUP** key.

2. Press **Calibrate** and then **Calibrate Probe**.

To calibrate a non-identifiable probe

1. Connect the voltage probe to the plug-in.

2. Attach the probe tip to the CAL hook that is located near the floppy disk drive.

3. Press the plug-in module's front-panel channel **SETUP** key.

4. Press **Calibrate** and then **Calibrate probe**.

If the probe being calibrated has an attenuation factor that allows the instrument to adjust the gain (in hardware) to produce even steps in the vertical scale factors, the instrument will do so. Typically, probes have standard attenuation factors such as divide by 10, divide by 20, or divide by 100.

Color grade is enabled...
Current Date : 6 460 98 15:14
Current Frame & Temp : 4°C

Channel 2 Vertical Calibration Status : **Calibrated**

Plug-in
Model number : 834644
Serial number : 0537200191
Last Calibration : 6 460 98 08:37
Current Plug-in & Temp : 2°C
Comments :

Figure 3-5. Electrical Channel Calibrate Menu
To calibrate other devices

The information in this section applies to both optical and electrical measurements. Since the mainframe’s CAL signal is a voltage source, it cannot be used to calibrate to the probe tip when the units are set to Ampere, Watt, or Unknown. Instead, set the external gain and external offset to compensate for the actual characteristics of the probe or device. If you do not know the actual characteristics, you can refer to the typical specifications that came with the probe or device.

1. Press the plug-in module’s front-panel channel [SETUP] key.
2. Press [External scale].
3. Press [Atten units = Ratio, Attenuation 1:1, and then Units Ampere (Volt, Watt, or Unknown)].
4. Press [Ext gain], and enter the actual gain characteristics of the probe or device.
5. Press [Ext offset], and enter the offset introduced by the probe or device.

External Scale

Both optical and electrical channels have an External scale setting which allows the user to enter in an offset value to compensate for gains or losses not associated with the device under test. This feature is useful for adjusting out the effects of devices such as test fixtures and attenuators so that the reading on the display gives the measurement value associated with only the actual device under test.

To adjust the external scale

1. Press the plug-in module’s front-panel channel [SETUP] key.
2. Press [External scale], and set the [Atten units] to “decibel”.
3. Press [Attenuation], and enter the appropriate values.
Figure 3-6. External Scale Menu
Complete Calibration Summary

<table>
<thead>
<tr>
<th>Calibration</th>
<th>What is calibrated</th>
<th>Measurements Affected</th>
<th>Recommended Interval</th>
<th>Key Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainframe Calibration</td>
<td>Accuracy and continuity of the timescale</td>
<td>Channels affected: optical & electrical. All time base measurements such as rise time, fall time, eye width, and jitter.</td>
<td>Annually at Agilent service center or if operating temp has changed and remains 5°C or more from calibration temperature. See service manual.</td>
<td>Utility
 Calibrate
 Calibrate frame</td>
</tr>
<tr>
<td>O/E Factory Wavelength Calibration</td>
<td>The photodetector responsivity</td>
<td>Channels affected: optical. Amplitude accuracy of all optical channel measurements. Optical power meter accuracy.</td>
<td>Annual factory re-calibration of standard wavelengths.</td>
<td>Not user accessible<sup>1</sup></td>
</tr>
<tr>
<td>O/E User Wavelength Calibration</td>
<td>The photodetector responsivity</td>
<td>Channels affected: optical. All optical channel measurements at user wavelength.</td>
<td>Annual re-calibration of user defined non-factory wavelengths</td>
<td>(Optical Channel Setup)
 Calibrate
 O/E Cal</td>
</tr>
<tr>
<td>Plug-in Vertical Calibration</td>
<td>Vertical offset and vertical scale accuracy for both electrical and optical channels.</td>
<td>Channels affected: optical & electrical. Any optical or electrical vertical measurements such as Vp to gp, eye height, extinction ratio, and the optical power meter</td>
<td>Perform after any power cycle or once every 10 hours during continuous use or if operating temperature changes by more than 5°C.</td>
<td>Utility
 Calibrate
 Calibrate Plug-in</td>
</tr>
</tbody>
</table>

¹ Refer to "O/E User-Wavelength Calibration" in this chapter.
Table 3-4. Complete Calibration Summary (continued)

<table>
<thead>
<tr>
<th>Calibration</th>
<th>What is calibrated</th>
<th>Measurements Affected</th>
<th>Recommended Interval</th>
<th>Key Path</th>
</tr>
</thead>
</table>
| Offsets Zero Cal. | Vertical offset is calibrated for the optical channel only. This calibration doesn’t include vertical scale accuracy. | Channels affected: optical. Any optical vertical measurements including: V_{p to p}, eye height, and extinction ratio. | Perform a plug-in vertical calibration in order to meet published specifications. Because the offset zero calibration performs only the offset portion of the plug-in vertical calibration, it should only be used before fast non-critical measurements. | ([Optical Channel Setup](#)) Calibrate
Offset 0
[Shift](#) (Meas eye)
[Extinction Ratio](#)
[Dark Cal](#) |
| Dark Cal. | Dark calibration measures the channel offset signal without any light present and this value is used in the extinction ratio algorithm. | Channels affected: optical & electrical. Extinction ratio. | Before extinction ratio measurements if the vertical scale or offset has changed since the last dark calibration or after a plug-in vertical calibration is performed. | ([Electrical Channel Setup](#)) Calibrate
Calibrate probe
(Channel Setup)
Calibrate skew |
| Probe cal. | Probe Attenuation | Channels affected: electrical. Any electrical measurement taken with the probe | Whenever a probe is connected
Before multiple channel measurements when measuring timing differences between channels. | ([Channel Setup](#))
External Scale |
| Channel Skew | Calibrates out the small differences in delay between channels. Useful for looking at timing differences between channels | Channels affected: optical & electrical. Multiple channel measurements, such as Differential TDR |
Whenever using external device (component or transducer) | |
| External Scale | Compensates for gain or loss associated with external devices (calibrates vertical scale to external device) | Channels affected: optical & electrical. Any measurement taken through an external device (component or transducer) |
Whenever using external device (component or transducer) |
([Channel Setup](#))
External Scale |
Specifications and Regulatory Information
Specifications and Regulatory Information

This chapter lists the system specifications and characteristics of the Agilent 83485A/B optical/electrical plug-in module when it is combined with either the Agilent 83480A or Agilent 54750A mainframes. The specifications and characteristics for the mainframe are in the Agilent 83480A, 54750A User’s Guide. Specifications apply over the temperature range +15°C to +35°C (unless otherwise noted) after the instrument’s temperature has been stabilized after 60 minutes of continuous operation.

In addition, you’ll find a declaration relating to regulatory information.

Specifications
Specifications described warranted performance. Unless otherwise noted, corrected limits are given when specifications are subject to minimization with error-correction routines.

Characteristics
Characteristics provide useful, nonwarranted, information about the functions and performance of the instrument. Characteristics are printed in italics.

Calibration cycle
Agilent Technologies designs instruments to meet specifications over the recommended calibration interval provided that the instrument is operated within the specified operating environment. To maintain specifications, periodic recalibrations are necessary. We recommend that the plug-in module be calibrated at an Agilent Technologies service facility every 12 months. Users are encouraged to adjust the calibration cycle based on their particular operating environment or measurement accuracy needs.
Specifications

The following are specifications used to test the Agilent 83485A/B plug-in module. Specifications are valid after a 1 hour warm-up period. See the Agilent 54701A Active Probe Service Guide for complete probe specifications.

Vertical specifications

Agilent 83485A Electrical Channel Vertical Specifications

<table>
<thead>
<tr>
<th>Bandwidth (≤ 3 dB) on electrical or optical channel</th>
<th>dc to 12.4 or 20 GHz, user selectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc Accuracy—single marker¹</td>
<td></td>
</tr>
<tr>
<td>12.4 GHz bandwidth</td>
<td>±0.4% of full scale</td>
</tr>
<tr>
<td></td>
<td>±2 mV ±1.5% (reading — channel offset)</td>
</tr>
<tr>
<td></td>
<td>±12°C/°C</td>
</tr>
<tr>
<td>20 GHz</td>
<td>±0.4% of full scale</td>
</tr>
<tr>
<td></td>
<td>±2 mV ±3% (reading — channel offset)</td>
</tr>
<tr>
<td></td>
<td>±12°C/°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dc Difference—two marker accuracy on same channel²</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 GHz</td>
<td>±0.8% of full scale</td>
</tr>
<tr>
<td></td>
<td>±1.5% of delta marker reading</td>
</tr>
<tr>
<td></td>
<td>±12°C/°C</td>
</tr>
<tr>
<td>20 GHz</td>
<td>±0.8% of full scale</td>
</tr>
<tr>
<td></td>
<td>±3% of delta marker reading</td>
</tr>
<tr>
<td></td>
<td>±12°C/°C</td>
</tr>
</tbody>
</table>

¹ It is recommended that a user vertical calibration be performed after every 10 hours of continuous use or if the temperature has changed by greater than 2°C from the previous vertical calibration.

² Where ΔT_{cal}² represents the temperature change in °C from the last user vertical calibration. Note that the temperature term goes to zero upon execution of a vertical calibration.

³ Where ΔTime represents the time since the last user vertical calibration. The uncertainty due to time typically stabilizes after 24 hours. This term goes to zero upon execution of a vertical calibration.
Agilent 83485A Electrical Channel Vertical Specifications (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Time (10%-90%) characteristic, calculated from T=0.35/5V, electrical</td>
<td></td>
</tr>
<tr>
<td>12.4 GHz</td>
<td>28.2 ps</td>
</tr>
<tr>
<td>20 GHz</td>
<td>17.5 ps</td>
</tr>
<tr>
<td>Maximum RMS Noise</td>
<td></td>
</tr>
<tr>
<td>12.4 GHz</td>
<td>0.5 mV (0.25 mV typical)</td>
</tr>
<tr>
<td>20 GHz</td>
<td>1.0 mV (0.5 mV typical)</td>
</tr>
<tr>
<td>Scale Factor</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1 mV/div</td>
</tr>
<tr>
<td>Maximum</td>
<td>100 mV/div</td>
</tr>
<tr>
<td>dc Offset Range</td>
<td>±500 mV</td>
</tr>
<tr>
<td>Nominal Input Impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Connectors</td>
<td>3.5 mm (1m), channel and trigger</td>
</tr>
<tr>
<td>Input Reflection/Return Loss</td>
<td>≤5% for 30 ps rise time</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>1</td>
</tr>
<tr>
<td>Dynamic Range/Maximum Specified Input Power</td>
<td>±400 mV relative to channel offset</td>
</tr>
<tr>
<td>Maximum Safe Input</td>
<td>±2V + peak ac (+16 dBm)</td>
</tr>
</tbody>
</table>
Agilent 83485A Optical Channel Vertical Specifications

<table>
<thead>
<tr>
<th>Bandwidth (3 dB) on electrical or optical channel</th>
<th>dc to 12.4 or 20 GHz (user selectable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 GHz, filtered</td>
<td>±25 μW</td>
</tr>
<tr>
<td>20 GHz</td>
<td>±2% [reading - channel offset]</td>
</tr>
<tr>
<td></td>
<td>±12% [°C]</td>
</tr>
<tr>
<td></td>
<td>±25 μW</td>
</tr>
<tr>
<td></td>
<td>±4% [reading - channel offset]</td>
</tr>
<tr>
<td></td>
<td>±12% [°C]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dc: Difference—two marker accuracy on same channel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 GHz, filtered</td>
<td>±2% of delta reading</td>
</tr>
<tr>
<td>20 GHz</td>
<td>±12% [°C]</td>
</tr>
<tr>
<td></td>
<td>±2% of delta reading</td>
</tr>
<tr>
<td></td>
<td>±12% [°C]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition Time (10%-90%) characteristic, calculated from T=0.46BW, optical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 GHz</td>
<td>40 ps</td>
</tr>
<tr>
<td>20 GHz</td>
<td>25 ps</td>
</tr>
<tr>
<td>STM-16/OC-48 filter</td>
<td>180 ps</td>
</tr>
<tr>
<td>STM-4/OC-12 filter</td>
<td>760 ps</td>
</tr>
<tr>
<td>STM-1/OC-3 filter</td>
<td>3 ns</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum RMS Noise</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 GHz, filtered</td>
<td>12 μW [8 μW typical]</td>
</tr>
<tr>
<td>20 GHz</td>
<td>25 μW [15 μW typical]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale Factor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>20 μW/div</td>
</tr>
<tr>
<td>Maximum</td>
<td>500 μW/div</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dc: Offset Range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+1 to -3 mW</td>
<td>referenced two divisions</td>
</tr>
<tr>
<td></td>
<td>below center screen</td>
</tr>
</tbody>
</table>

| Connectors | User selected option, 9/125 μm single mode fiber |

| Input Reflection/Return Loss | >33 dB for SMF-10 interface connector |

1. It is recommended that a user vertical calibration be performed after every 10 hours of continuous use or if the temperature has changed by greater than 2°C from the previous vertical calibration.

2. Referenced to average power meter.

3. Where ΔT_{m=3} represents the temperature change in °C [K] from the last user vertical calibration. Note that the temperature term goes to zero upon execution of a vertical calibration.

4. Where Δt_i represents the time since the last user vertical calibration. The uncertainty due to time typically stabilizes after 24 hours. This term goes to zero upon execution of a vertical calibration.
Specifications and Regulatory Information

Specifications

Agilent 83485A Optical Channel Vertical Specifications (continued)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Wavelengths</td>
<td>1310 nm and 1550 nm</td>
</tr>
<tr>
<td>Average power Monitor</td>
<td></td>
</tr>
<tr>
<td>Specified Operating Range</td>
<td>−30 dBm to +3 dBm</td>
</tr>
<tr>
<td>Factory Calibrated Accuracy [20°C ± 30°C]</td>
<td>±5% of reading ±100 nW ± connector uncertainty</td>
</tr>
<tr>
<td>User Calibrated Accuracy [20°C ± 5°C temp change]</td>
<td>±2% of reading ±100 nW ± power meter accuracy</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>1</td>
</tr>
<tr>
<td>Dynamic Range/Maximum Specified Input Power</td>
<td>2 mW</td>
</tr>
<tr>
<td>Maximum Safe Input</td>
<td>10 mW peak</td>
</tr>
<tr>
<td>Wavelength Range</td>
<td>1200–1600 nm</td>
</tr>
</tbody>
</table>

1. A user calibration can be performed with average optical power levels from 100 to 2000 μW, however, the instrument optical accuracy specification is only valid for average optical-calibration powers from 500 to 2000 μW.
Agilent 03485B Electrical Channel Vertical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth [-3 dB]</td>
<td>dc to 40 GHz, or dc to 18 GHz (user selectable)</td>
</tr>
<tr>
<td>dc Accuracy—single voltage marker<sup>1</sup></td>
<td>±0.4% of full scale</td>
</tr>
<tr>
<td>16 GHz</td>
<td>±0.4% of full scale</td>
</tr>
<tr>
<td>40 GHz</td>
<td><9 ps (40 GHz BW)</td>
</tr>
<tr>
<td>Transition Time (10% to 90%, calculated from T=0.39/bandwidth)</td>
<td></td>
</tr>
<tr>
<td>Maximum RMS Noise</td>
<td><0.5 mV (0.25 mV typical)</td>
</tr>
<tr>
<td>16 GHz</td>
<td></td>
</tr>
<tr>
<td>40 GHz</td>
<td></td>
</tr>
<tr>
<td>Scale Factor (full scale in eight divisions)</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1 mV/div</td>
</tr>
<tr>
<td>Maximum</td>
<td>100 mV/div</td>
</tr>
<tr>
<td>dc Offset Range</td>
<td>±500 mV</td>
</tr>
<tr>
<td>Inputs:</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>±400 mV relative to channel offset</td>
</tr>
<tr>
<td>Maximum Safe Input Voltage</td>
<td>16 dBm peak ac ±2 V dc</td>
</tr>
<tr>
<td>Nominal Impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Reflections</td>
<td>≤5% for 20 ps rise time</td>
</tr>
<tr>
<td>Connector</td>
<td>2.4mm (1 mil)</td>
</tr>
</tbody>
</table>

¹ It is recommended that a user vertical calibration be performed after every 10 hours of continuous use or if the temperature has changed by greater than 2°C from the previous vertical calibration.

² Where ΔT_{max}² represents the temperature change in Celsius from the last user vertical calibration. Note that the temperature term goes to zero upon execution of a vertical calibration.
Specifications

Agilent 83485B Optical Channel Vertical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (−3 dB)</td>
<td>dc to 30 GHz</td>
</tr>
<tr>
<td>dc Accuracy<sup>1</sup></td>
<td>±50 μW, ±4% of reading − channel offset</td>
</tr>
<tr>
<td>(Optical channel referenced to average power meter)</td>
<td>±12°C/°C/</td>
</tr>
<tr>
<td>dc Difference<sup>1</sup></td>
<td>±4% of defect reading</td>
</tr>
<tr>
<td>(two marker accuracy; same channel, referenced to</td>
<td>±12°C/°C/</td>
</tr>
<tr>
<td>average power monitor)</td>
<td></td>
</tr>
<tr>
<td>Transition Time (10% to 90%) characteristic,</td>
<td><5 ps</td>
</tr>
<tr>
<td>calculated from T = 0.40/bandwidth, optical</td>
<td></td>
</tr>
<tr>
<td>Maximum RMS Noise</td>
<td><30 μW, <15 μW typical</td>
</tr>
<tr>
<td>Scale Factor (full scale is eight divisions)</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>20 μW/div</td>
</tr>
<tr>
<td>Maximum</td>
<td>500 μW/div</td>
</tr>
<tr>
<td>dc Offset Range</td>
<td>+1 mW to −3 mW, referenced to two divisions above bottom of screen</td>
</tr>
<tr>
<td>Connector Type</td>
<td>9/125 μm single mode, user selectable connector option</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>30 dB [HMS-10 connector]</td>
</tr>
<tr>
<td>Filtered Bandwidth</td>
<td>Fourth or fifth order Bessel-Thomson filter, 3 dB frequency 7.465 GHz</td>
</tr>
<tr>
<td>Calibrated Wavelength</td>
<td>1310 nm and 1550 nm</td>
</tr>
<tr>
<td>Average Power Monitor</td>
<td></td>
</tr>
<tr>
<td>Specified Operating Range</td>
<td>−27 dBm to +3 dBm [2 μW to 2 mW]</td>
</tr>
<tr>
<td>Factory Calibrated Accuracy (20°C to 30°C)</td>
<td>±5% of reading ±100 nW ± connector uncertainty</td>
</tr>
<tr>
<td>User Calibrated Accuracy (<5°C temp change)</td>
<td>±2% of reading ±100 nW ± power-meter uncertainty</td>
</tr>
<tr>
<td>Maximum Specified Input Power</td>
<td>2 mW</td>
</tr>
<tr>
<td>Maximum Safe Input</td>
<td>10 mW peak</td>
</tr>
<tr>
<td>Wavelength Range</td>
<td>1000 to 1800 nm</td>
</tr>
</tbody>
</table>

¹ It is recommended that a user vertical calibration be performed after every 10 hours of continuous use or if the temperature has changed by greater than 2°C from the previous vertical calibration.

² Where |ΔT_{cal}| represents the temperature change in °C from the last user vertical calibration. Note that the temperature term goes to zero upon execution of a vertical calibration.
Environmental specifications

<table>
<thead>
<tr>
<th>Electrical and Optical Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Operating</td>
</tr>
<tr>
<td>Non-operating</td>
</tr>
<tr>
<td>Humidity</td>
</tr>
<tr>
<td>Operating</td>
</tr>
<tr>
<td>Non-operating</td>
</tr>
</tbody>
</table>

Power Requirements

| Supplied by mainframe. |

Weight

| Net | approximately 1.2 kg [2.6 lb.] |
| Shipping | approximately 2.1 kg [4.6 lb.] |

Specifications and Regulatory Information
Specifications

4-9
Characteristics

The following characteristics are typical for the Agilent 83485A/B optical/electrical plug-in module. See the Agilent 54701A Active Probe Service Guide for complete probe characteristics.

Trigger input characteristics

<table>
<thead>
<tr>
<th>Electrical and Optical Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Impedance</td>
</tr>
<tr>
<td>Input Connector</td>
</tr>
<tr>
<td>Trigger level range</td>
</tr>
<tr>
<td>Maximum safe input voltage</td>
</tr>
<tr>
<td>Percent reflection</td>
</tr>
</tbody>
</table>

Declaration of Conformity

DEMANDATION OF CONFORMITY
according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.
Manufacturer's Address: 1400 Fountaingrove Parkway
 Santa Rosa, California 95403
 U.S.A.

Declares that the product:

Product Name: Optical/Electrical plug-in module
Model Numbers: HP 83485A, HP 83485B
Product Options: This declaration covers all options of the above products.

Conforms to the following product specifications:

 CAN/CSA-C22.2 No. 1010.1-92

EMC: CISPR 11:1990 /EN 55011:1991, Group 1 Class A
 IEC 801-2:1981 /EN 50082-1:1992, 4 kV CD, 8 kV AD
 IEC 801-3:1984 /EN 50082-1:1992, 3V/m, 27-500 MHz
 IEC 801-4:1988 /EN 50082-1:1992, 800 V signal, 1000 V AC

Supplementary Information:

This product was tested in an HP 83480A mainframe.
This product complies with the requirements of the Low Voltage Directive 73/23/EEC and
the EMC Directive 89/336/EEC.

Santa Rosa, California 7/7/95

Date Dixon Browder / Quality Manager

European Contact:
Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH,
Department 7Q/Standards Europe, Herrenberger Straße 130, D-71034 Boblingen (FAX:
+ 49-7031-14-3143)
In Case of Difficulty
In Case of Difficulty

What you’ll find in this chapter

This chapter provides a list of suggestions for you to follow if the plug-in module fails to operate. A list of messages that may be displayed is also included.

For complete service information, refer to the optional Agilent 83405A/B Service Guide.

Review the procedure being performed when the problem occurred. Before calling Agilent Technologies or returning the unit for service, a few minutes spent performing some simple checks may save waiting for your instrument to be repaired.
If the mainframe does not operate

Please make the following checks:

☐ Is the line fuse good?
☐ Does the line socket have power?
☐ Is the unit plugged in to the proper ac power source?
☐ Is the mainframe turned on?
☐ Is the rear-panel line switch set to on?
☐ Will the mainframe power up without the plug-in module installed?

If the mainframe still does not power up, refer to the optional Agilent 83480A, 54750A Service Guide or return the mainframe to a qualified service department.
If the plug-in does not operate

1. Make the following checks:
 - Is the plug-in module firmly seated in the mainframe slot?
 - Are the knurled screws at the bottom of the plug-in module finger-tight?
 - Is a trigger signal connected to a trigger input?
 - If other equipment, cables, and connectors are being used with the plug-in module are they connected properly and operating correctly?
 - Review the procedure for the test being performed when the problem appeared. Are all the settings correct? Can the problem be reproduced?
 - Are the connectors clean? See “Cleaning Connections for Accurate Measurements” in Chapter 1 for more information about cleaning the connectors.

2. Perform the following procedures:
 - Make sure the instrument is ready to acquire data by pressing Run.
 - Find any signals on the channel inputs by pressing Autoscale.
 - See if any signals are present at the channel inputs by pressing:
 - Trigger
 - Sweep
 - freerun

 After viewing the signal, press triggered.

 - Make sure Channel Display is on by pressing:
 - Channel
 - Display on off on

 - Make sure the channel offset is adjusted so the waveform is not clipped off the display.

 - If you are using the plug-in module only as a trigger source, make sure at least one other channel is turned on.

 If all of the channels are turned off, the mainframe will not trigger.
□ Make sure the mainframe identifies the plug-in module by pressing:

```
[Utility]
System config...
```

The calibration status of the plug-in modules is listed near the bottom of the display, in the box labeled "Plug-ins". If the model number of the plug-in module is listed next to the appropriate slot number, then the mainframe has identified the plug-in.

If "known" is displayed instead of the model number of the plug-in module, remove and reinsert the plug-in module in the same slot. If "unknown" is still displayed, then the memory contents of the plug-in module are corrupt. Refer to the optional Agilent 83485A/B Service Guide or contact a qualified service department.

If all of the above steps check out okay, and the plug-in module still does not operate properly, then the problem is beyond the scope of this book. Refer to the optional Agilent 83485A/B Service Guide or return the plug-in module to a qualified service department.
In Case of Difficulty

Error Messages

The following error messages are for the plug-in module. Typically, the error messages indicate there is a problem with either the plug-in or the mainframe.

This section explains what the messages mean and offers a few suggestions that might help resolve the error condition. If the suggestions do not eliminate the error message, then additional troubleshooting is required that is beyond the scope of this book. Refer to the optional Agilent 83485A/B Service Guide and Agilent 83480A, 54750A Service Guide for additional troubleshooting information.

Additional error messages are listed in the Agilent 83480A, 54750A User’s Guide for the mainframe.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory error occurred in plug-in</td>
<td>The mainframe could not correctly read the contents of the memory in the plug-in.</td>
</tr>
<tr>
<td>Try reinstalling plug-in</td>
<td>1. Remove and reinstall the plug-in module.</td>
</tr>
<tr>
<td></td>
<td>2. Each time a plug-in is installed, the mainframe rereads the plug-in module’s memory.</td>
</tr>
<tr>
<td></td>
<td>3. Verify the plug-in module is firmly seated in the mainframe slot.</td>
</tr>
<tr>
<td></td>
<td>4. Verify the knurled screws at the bottom of the plug-in module are finger-tight.</td>
</tr>
<tr>
<td></td>
<td>5. Install the plug-in in a different slot in the mainframe.</td>
</tr>
<tr>
<td>Busy timeout occurred with plug-in</td>
<td>The mainframe is having trouble communicating with the plug-in module. Make sure there is a good connection between the mainframe and the plug-in module.</td>
</tr>
<tr>
<td>Try reinstalling plug-in</td>
<td>1. Remove and reinstall the plug-in module.</td>
</tr>
<tr>
<td></td>
<td>2. Verify the plug-in module is firmly seated in the mainframe slot.</td>
</tr>
<tr>
<td></td>
<td>3. Verify the knurled screws at the bottom of the plug-in module are finger-tight.</td>
</tr>
<tr>
<td></td>
<td>4. Install the plug-in in a different slot in the mainframe.</td>
</tr>
<tr>
<td>Issue</td>
<td>Solution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Communication failure</td>
<td>An illegal hardware state is detected at the mainframe to plug-in module interface of the specified slot. If the slot is empty, there is a mainframe hardware problem. Refer to the Agilent 83480A, 54750A Service Guide. If a plug-in is installed in the slot, there is a plug-in module hardware problem. Refer to the optional Agilent 83485A/B Service Guide.</td>
</tr>
<tr>
<td>ID error occurred in plug-in</td>
<td>The information read from the plug-in module’s memory does not match the hardware in the plug-in module. This can be caused by a communication problem between the mainframe and the plug-in module. Make sure there is a good connection between the mainframe and the plug-in. 1. Remove and reinstall the plug-in module. 2. Verify the plug-in module is firmly seated in the mainframe slot. 3. Verify the knurled screws at the bottom of the plug-in module are finger-tight. 4. The Agilent 54750A mainframe does not accept the Agilent 83485A/B optical/electrical plug-in module. To use the optical plug-in modules, a firmware upgrade must first be installed. Order the Agilent 83480K communications firmware kit and follow the installation instructions. 5. The Agilent 83480A, 54750A mainframes do not accept plug-in modules designed for use with the Agilent 54710A, 54720A.</td>
</tr>
<tr>
<td>Cal not possible</td>
<td>The power is too low to perform a user O/E calibration.</td>
</tr>
</tbody>
</table>
In Case of Difficulty
Index
Index

A accessories
 connection devices, 1-5
 optional, 1-5
accuracy performance, 1-11
active probe, 2.7
Agilent Technologies Sales and Service Offices, v
attenuation
 range, 2-10
Attenuation soft key, 2-10
attenuator
 scaling, 2-9
Attenuation soft key, 2-9
automatic measurement, 2.5
auxiliary power connector, 1-10

B Bandwidth key, 2.8
 Bandwidth/Wavelength... soft key, 2.7
 Bessel-Thomson filter, 1-2, 2.8

C Calibrate probe soft key, 2-15
 Calibrate soft key, 2-11
 calibration
 external scale, 3-15
 factory, 3-4
 mainframe, 3-4
 O/E, 2-14, 3-6
 O/E converters, 3-15
 O/E user wavelength, 3-9
 offset zero, 2-14, 3-12
 overview, 3-2
 plug-in module vertical calibration, 3-11
 probe, 3-16
 probes, 3-15
 skew, 3-15
 status, 5-5
 user, 3-7
 validity, 2-14
 vertical, 1-11
 voltage probe, 3-16
 CAL signal, 2-15
 Cal status soft key, 2-13
channel
display, 2-5
electrical, 1-2
input, 1-10
optical, 1-2
scale, 2-10
setup, 2-2
Channel 1 Calibration Status message, 2-14
Channel autoscale soft key, 2-9
Channel key, 2-2
characteristics, 4-10
cleaning
adapters, 1-16
non-lensed connectors, 1-15
cleaning fiber optic connections, 1.13, 1.15
connection devices, 1.5
connector care, 1.13
Current Date message, 2-13
Current Time ΔTemp message, 2-13
customer assistance, v

d decibel calculation, 2-9
declaration of conformity, 4-10
description of the plug-in module, 1-2
digital offset, 2-7
Display soft key, 2-5

e electrical channel, 1-2
Agilent 83485A vertical specifications, 4.3
Agilent 83485B specifications, 4.7
environmental specifications, 4-9
trigger input characteristics, 4-10
weight, 4-9
environmental specifications, 4-9
error messages, 5-6-7
extender cables, 1-12
external scale calibration, 3.15
External scale ... soft key, 2-9
external trigger
input, 1-10
level, 1-12
Ext gain soft key, 2-11
Ext offset soft key, 2-11

Index-3
H horizontal waveform, 2-12

I index-matching compounds, 1-13
 index matching gel, 1-13
 input connector, 1-13
 inspecting cables, 1-14
 installing the plug-in module, 1-11

K key conventions, 1-6

M mainframe calibration, 3-4
 mainframe troubleshooting, 5-3
 marker value, 2-10
 math function, 2-5
 menu overview, 1-6

O O/E calibration, 3-6
 O/E cal softkey, 2-14
 O/E converter calibration, 3-15
 O/E user wavelength calibration, 3-9
 offset, 2-5-7, 2-10, 2-14
 Offset softkey, 2-7
 offset zero calibration, 3-12
 Offset zero softkey, 2-14
 optical channel, 1-2, 2-7
 Agilent 83485A specifications, 4-4
 Agilent 83485B specifications, 4-7
 environmental specifications, 4-9
 trigger input characteristics, 4-10
 vertical specifications, 4-4
 weight, 4-9
 optical to electrical converter scaling, 2-9
 optional accessories, 1-5
 options, 1-4
 ordering information, 1-4

Index-4
P plug-in message, 2-14
plug-in module
description, 1-2
features, 1-8
front panel, 1-10
installation, 1-11
purpose, 1-8
specifications, 4-3-9
troubleshooting, 5-4
weight, 4-9
plug-in module vertical calibration, 3-11
power level, 2-7
power requirements, 4-9
probe
attenuation, 2-16, 2-15
attenuation factor, 2-9
characteristics, 2-11
power, 2-7
power connector, 1-10
probe calibration, 3-15, 3-16
pulse parameter measurements, 2-5

R RF connectors, 1-11

S safety information, iv, 1-12
sales and service offices, v
Scale soft key, 2-6
shifted function keys, 1-6
skew calibration, 3-15
skew soft key, 2-12
soft key
menu, 1-10
overview, 1-6
SONET/SDH filter, 1-2, 2-8
specifications, 4-7
plug-in module, 4-3-9

T technical assistance, v
temperature change, 2-13-14
trigger
external, 1-12
input characteristics, 4-10
level, 2-10
source, 2-5
troubleshooting, 5-2-7
U Units of key, 2-6, 2-10
 user calibrations, 3-7

V vertical
 calibration, 1-11
 measurement, 2-10
 scale, 2-5-6, 2-9
 specifications, 4-3
 waveform, 2-7
 voltage
 measurement, 2-10
 probe, 2-15
 voltage probe calibration, 3-16

W warranty information, vii
 wattage measurement, 2-10
 waveform
 display, 2-5
 horizontal, 2-12
 Wavelength key, 2-8
 wavelength settings, 2-7
 weight of plug-in module, 4-9

Index-6